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Abstract
The design of statistical predictive models for climate data gives
rise to some unique challenges due to the high dimensionality
and spatio-temporal nature of the datasets, which dictate that
models should exhibit parsimony in variable selection. Recently,
a class of methods which promote structured sparsity in the
model have been developed, which is suitable for this task. In
this paper, we prove theoretical statistical consistency of esti-
mators with tree-structured norm regularizers. We consider one
particular model, the Sparse Group Lasso (SGL), to construct
predictors of land climate using ocean climate variables. Our
experimental results demonstrate that the SGL model provides
better predictive performance than the current state-of-the-art,
remains climatologically interpretable, and is robust in its vari-
able selection.
Keywords: Sparse Group Lasso, climate prediction, sta-
tistical consistency

1 Introduction
The success of data mining techniques in complement-
ing and supplementing findings from several topics of
scientific research is well documented [2, 11, 9]. How-
ever, climate science problems have some singular chal-
lenges, which makes the issue of scientifically meaningful
prediction a complex process. Several climate variables
are observed at various location on the planet on multi-
ple occasions, thus creating a very large dataset. These
variables are dependent between themselves, and across
space. However, scientific interpretability and parsimony
demands that any discovered relationship among climate
variables be simultaneously eclectic and selective. It is
not viable to work out such complex dependencies from
the first principles of physics, and data mining discovery
of potential climate variable relations can be of immense
benefit to the climate science community.

The sparse group lasso (SGL hereafter) method is
of considerable importance in this context. For a target
climate variable in a given location, it allows the selection
of other locations that may have an influence through
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one or more variables, and then allows for a choice of
variables at that location. Inherent in this technique is
the notion of sparsity, by which only important variables
at important locations are selected, from the plethora of
potential covariates at various spatial locations.

Recent work in statistical modeling has proved the
utility of having parsimony in the inferred dependency
structure. Efforts in this direction have been successful in
developing sparse models, which promote sparsity within
the dependencies characterized by the model. These
models have been applied successfully in a number of
fields, such as signal processing [4], bioinformatics [10],
computer vision [26] etc. Incorporating sparsity within
a statistical model provides a natural control over the
complexity of the model achieved through training.

The classical statistical model trains from the training
data at hand by defining a loss function to measure the dis-
crepancy between its predictions and observations of the
response variables. Optimization routines are used to ob-
tain an optimal parameter set for the model so that the loss
function is minimized. Sparsity is induced within the op-
timal parameter set by adding a sparsity-inducing regular-
izer function to the loss and optimizing this combination
over the parameter set. The regularizer is usually a norm
function of the parameter vector. This construction gives
rise to a family of sparse statistical models with a con-
vex loss function and a convex norm regularizer [13, 23].
Building on this literature, recent work has shown the util-
ity of imposing structure among the dependencies through
the use of group [27] and hierarchical norm regularizers
[14, 12]. These structures can be learnt from some ex-
ternal sources, such as domain experts, and are useful in
obtaining more robust and interpretable predictive mod-
els. Efficient optimization algorithms have been proposed
to solve such estimation problems [17]. Recent results
[19, 28] have proved statistical consistency guarantees for
a class of sparse estimators under fairly mild conditions.

In this paper, using the analysis method developed in
[19], we have proved statistical consistency guarantees for
the class of tree-structured hierarchical norm regularized
estimation problems [17]. We have applied sparse model-
ing to one particular climate prediction task - prediction
of land climate variables from measurements of ocean



climate variables. Assuming a linear regression model,
we have used a recently proposed group-structured sparse
method, called Sparse Group Lasso (SGL) for the predic-
tion tasks. Our main contributions in this paper are as
follows:

1. We provide statistical consistency bounds for a gen-
eral class of hierarchical sparsity inducing norm reg-
ularized estimation problems.

2. We show that SGL provides better predictive accu-
racy and a more interpretable prediction model than
the state-of-the-art in climate science.

3. We show that SGL is robust in covariate selection
through an empirical analysis of its regularization
path.

We formally describe the predictive problem from a
climate perspective in Section 2. Consistency of hierar-
chical sparsity inducing norm regularized estimators is
proved in Section 3. We discuss optimization methods
for SGL in Section 4. The dataset and methodology is de-
scribed in detail in Section 5. Sections 6 - 8 present our
experimental results using SGL on climate data. Finally,
we conclude with discussion in Section 9.

2 Problem Statement
We consider the task of predicting climate variables over
“target” regions on land by using information from 6
climate variables over oceans. In particular, we choose
temperature and precipitation as response variables on the
chosen target regions. A similar task was performed by
[22] using “climate clusters” in a linear regression model.
The authors have also recently compared the performance
of linear predictive models with a number of nonlinear
predictive models [21] and the analysis shows that the
they typically have similar performances.

The statistical model that we use is linear and can be
defined as:

(2.1) y ∼ Xθ∗ + w,

where y ∈ Rn is the n-dimensional vector of observations
of a climate variable at a target region, θ∗ ∈ Rp is the
coefficient associated with all p variables at all locations,
X ∈ Rn×p is the covariate matrix and w ∈ Rn is the
noise vector. Our goal is two-fold:

1. understand which covariates are relevant/important
for predicting the target variable, and

2. build a suitable regressor based on these relevant
variables.

Assuming that the noise vector w follows a Gaussian
distribution, estimating the vector θ∗ amounts to solving
the “ordinary least squares” (OLS) problem:

(2.2) θ̂OLS = argmin
θ∈Rp

{
1

2n
‖y −Xθ‖22

}
.

Clearly, when n < p, the system is unidentifiable and we
will obtain multiple solutions θ̂OLS . Moreover, in gen-
eral, all coefficients of θ̂OLS will be non-zero, signifying
statistical dependency of the “target” variable on all vari-
ables over all oceans. As is well known in statistical litera-
ture [13], the OLS estimate has large variance and hence,
is not robust. Also, the estimate is not interpretable in
terms of climate science due to the presence of many spu-
rious dependencies.

In such cases, a regularizer r(θ) is added to the
squared loss function in order to have a more robust esti-
mate of θ∗ [13]. In many applications, such as climate, the
dependencies are, in general, sparse, meaning that most of
the coefficients of θ̂ are 0 [25, 24]. To promote sparsity in
the estimate, sparsity-inducing convex norm regularizers
are commonly used [23, 1]. These sparse methods offer
significant computational benefits over traditional feature
selection methods and some have been proven to be sta-
tistically consistent [28, 1].

As mentioned earlier, the covariates in our problem
are 6 climate variables measured at ocean locations over
the globe. This spatial structure of the data indicates a
natural “grouping” of the variables at each ocean location.
Simple sparse regularizers, such as the LASSO penalty
[23] do not respect this structure inherent in the data.
Therein arises the need to have regularizers which impose
structured sparsity that respects this spatial nature. The
model that we use incorporates such a regularizer and
is called Sparse Group Lasso (SGL) [12]. The next
subsection describes the model.

SGL and Hierarchical Norms: Our motivation in pro-
moting structured sparsity is drawn from the fact that for
predicting a target variable, if a particular location on
oceans is irrelevant, then coefficients of all 6 variables at
that location should be zero. Furthermore, if a particular
location is deemed ‘relevant’, then we should be able to
select the “most important” variable(s) at that location to
be considered for prediction.

To formalize the problem, let T be the total number
of locations over oceans. Therefore, we have p = 6T
variables as covariates in the regression problem. Then,
for a penalty parameter λ, the SGL estimator is given by

(2.3) θ̂SGL = argmin
θ∈Rp

{
1

2N
‖y −Xθ‖22 + λr(θ)

}
,



where r is the SGL regularizer given by

(2.4) r(θ) := r(1,G2,α) = α‖θ‖1 + (1− α)‖θ‖1,G ,

where

‖θ‖1 =

p∑
i=1

|θi| ,

‖θ‖1,G =

T∑
k=1

‖θGk‖2

and G = {G1, . . . , GT } are the groups of variables at the
T locations considered. The mixed norm ‖θ‖1,G penalizes
groups of variables at irrelevant locations, while the L1

norm ‖θ‖1 promotes sparsity among variables chosen at
selected locations.

The SGL regularizer belongs to a general class
of convex norm regularizers r(·) which impose a
tree-structured hierarchical structure in the sparsity in-
duced [17, 14]. Such norms impose a hierarchy among
groups formed from the index set {1, . . . , p} in the fol-
lowing way. Given a tree with p leaves, let the nodes of
the tree denote groups of indices from the index set. The
root of the tree denotes a single group containing all p in-
dices, while each leaf denotes a single index. Now, the
constraint imposed is that for any node of the tree, the el-
ements (indices) contained in it should be a subset of the
elements (indices) contained in its parent node.

In the next section, following the analysis technique
developed in [19], we prove that, under fairly general
conditions, hierarchical tree-structured norm regularized
estimation is statistically consistent in estimating the true
parameter θ∗ of the distribution from which the data
samples (X, y) were generated. We illustrate the SGL
regularizer to be a special case of such norms and provide
explicit bounds for the consistency of SGL.

3 Consistency of Sparse Group Lasso
3.1 Formulation: Let Zn1 := {Z1, . . . , Zn} denote n
observations drawn i.i.d. according to some distribution
P, and suppose that we are interested in estimating some
parameter θ of the distribution P. Let L : Rp × Zn 7→ R
be some convex loss function that, for a given set of
observationsZn1 , assigns a costL(θ;Zn1 ) to any parameter
θ ∈ Rp. We assume that that the population risk
R(θ) = EZn1 [L(θ;Zn1 )] is independent of n, and we let
θ∗ ∈ argminθ∈Rp R(θ) be a minimizer of the population
risk. As is standard in statistics, in order to estimate
the parameter vector θ∗ from the data Zn1 , we solve a
convex program that combines the loss function with a
regularizer. For the regularization function r : Rp 7→ R,
consider the regularized M -estimator given by

(3.5) θ̂λn ∈ argmin
θ∈Rp

{L(θ;Zn1 ) + λnr(θ)} ,

where λn > 0 is a user-defined regularization penalty.
For the purpose of this paper, we consider linear

models based on n observations Zi = (xi, yi) ∈ Rp × R
of covariate-response pairs as given in (2.1). We assume
that the noise vector w is zero mean and has sub-Gaussian
tails, i.e., there is a constant σ > 0 such that for any
v, ‖v‖2 = 1, we have
(3.6)

P(|〈v, w〉| ≥ δ) ≤ 2 exp

(
− δ2

2σ2

)
, for all δ > 0 .

The condition holds in the special case of Gaussian noise;
it also holds whenever the noise vector w consists of
independent bounded random variables.

3.2 Assumptions on Regularizer and Loss Function:
Following [19], the first key requirement for the analysis
is a property of the regularizer r. The regularizer is
defined to be decomposable w.r.t. a subspace pair A ⊆
B ⊆ Rp if, for any α ∈ A and β ∈ B⊥, where B⊥ is the
orthogonal space of B,

(3.7) r(α+ β) = r(α) + r(β) .

Let us define the error vector ∆̂λn := θ̂λn − θ∗, and
the projection operator ΠA : Rp 7→ A, such that

ΠA(u) = argmin
v∈A

‖u− v‖∗ ,

for some given error norm ‖ · ‖∗. Then, if the loss L is
convex, we can define the set

C(A,B; θ∗) :=

{∆ ∈ Rp|r(ΠB⊥(∆)) ≤ 3r(ΠB(∆)) + 4r(ΠA⊥(θ∗))} ,

(3.8)

which contains the error ∆̂ for any λn satisfying

λn ≥ 2r∗(∇L(θ∗;Zn1 )) .

A formal proof of the statement is provided in [19].
The second key requirement, as stated in [19], is that

the loss function L should satisfy the Restricted Strong
Convexity (RSC) property. Let us define δL(∆, θ∗) :=
L(θ∗ + ∆;Zn1 ) − L(θ∗;Zn1 ) − 〈∇L(θ∗;Zn1 ),∆〉. L
satisfies RSC with curvature κL > 0 and tolerance
function τL if, for all ∆ ∈ C(A,B; θ∗),

(3.9) δL(∆, θ∗) ≥ κL‖∆‖2∗ − τ2L(θ∗) .

Further, [19] defines a subspace compatibility con-
stant with respect to the pair (r, ‖ · ‖∗) for any subspace
B ⊆ Rp as follows:

(3.10) Ψ(B) := sup
u∈B\{0}

r(u)

‖u‖∗
.



Based on the assumption that L is convex and differ-
entiable, and the norm regularizer r is decomposable w.r.t.
a subspace pair A ⊆ B, [19] presents the following key
result:

Theorem 1 Consider the convex program in (3.5) based
on a strictly positive regularization constant

(3.11) λn ≥ 2r∗(∇L(θ∗;Zn1 )) .

Then any optimal solution θ̂λn to (3.5) satisfies the bound
(3.12)

‖θ̂λn−θ∗‖2∗ ≤ 9
λ2n
κ2L

Ψ2(B)+
λn
κL

{
2τ2L(θ∗) + 4r(ΠA⊥(θ∗)

}
.

3.3 Analysis for Hierarchical Tree-Structured Norm:
We now provide statistical consistency analysis of the
hierarchical tree-structured norm regularizer described in
Section (2). Let the height of the tree be h + 1, with
the leaves having a height 0 and the root having a height
h + 1. Let the maximum size of a group at height i be
mi. Let the nodes (groups) at height i be denoted by
{Gij} , j = 1, . . . , ni. Note that n0 = p and m0 = 1.
The group norm at height i is computed as:

(3.13) ‖θGi‖(1,ν) :=

ni∑
j=1

‖θGij‖ν

For any (α0, α1, . . . , αh) such that 1 > αi > 0 ,∀i and
α0 + α1 + . . . + αh = 1, the tree-norm regularizer is
formally defined as

(3.14) r(θ) := rtree(θ) :=

h∑
i=0

αi‖θGi‖(1,ν) .

Our analysis consists of three key parts: (i) Showing
that the regularizer rtree is decomposable, (ii) Showing
that the loss function satisfies the RSC condition, and (iii)
Choosing a λn which satisfies the prescribed lower bound.

Following [19], we assume that for each k = 1, . . . , p

(3.15)
‖Xk‖2√

n
≤ 1 .

Note that the assumption can be satisfied by simply rescal-
ing the data, and is hence without loss of generality. Fur-
ther, the above assumption implies that

(3.16)
‖XGij

‖ν→2
√
n

≤ 1 ,

where the operator norm

‖XGt‖ν→2 := max
‖θ‖ν=1

‖XGtθ‖2 .

3.3.1 Decomposability of Regularizer: We may note
that the group norm at a particular height in the tree,
‖θGi‖(1,ν) is over groups which are disjoint. Hence it
decomposes over the subspace spanned by each group.
Therefore, following the definitions and arguments in
[19], the tree-norm is decomposable.

3.3.2 Restricted Strong Convexity: As shown in [19],
RSC for the loss function L is equivalent to a restricted
eigenvalue condition on the covariate matrix X . If X is
formed by sampling each row Xi ∼ N(0,Σ), referred to
as the Σ-Gaussian ensemble, then with high probability L
satisfies RSC. It has been shown [29] that the guarantee
extends to sub-Gaussian designs as well.

3.3.3 Bounds for λn: Recall from Theorem 1 that the
λn needs to satisfy the following lower bound:

(3.17) λn ≥ 2r∗tree(∇L(θ∗;Zn1 )) .

A key issue with the above lower bound is that it is a
random variable depending on Zn1 . A second issue is
that the conjugate r∗tree for the mixed norm rtree(v) may
not be obtainable in closed (non-variational) form. So we
first obtain an upper bound r̄∗tree on r∗tree, and choose a
λn which will satisfy the lower bound in (3.17) with high
probability over choices of Zn1 .

By definition

r∗tree(v)

= sup
u∈Rp\{0}

〈u, v〉
rtree(u)

= sup
u∈Rp\{0}

〈u, v〉∑h
i=0 αi‖uGi‖(1,ν)

(a)

≤ sup
u∈Rp\{0}

[
h∑
i=0

αi
〈u, v〉
‖uGi‖(1,ν)

]

≤
h∑
i=0

αi sup
u∈Rp\{0}

〈u, v〉
‖uGi‖(1,ν)

=

h∑
i=0

αir
∗
Giν

(v) = r̄∗tree(v) ,

(3.18)

where (a) follows from Jensen’s inequality and r∗Giν is the
conjugate norm of rGiν (v) =

∑ni
j=1 ‖vGij‖ν given by

(3.19) r∗Giν (v) = max
j=1,...,ni

‖vGij‖ν∗ ,

where ν∗ > 0 satisfies 1
ν + 1

ν∗ = 1.
By definition, we have ∇L(θ∗;Zn1 ) = XTw

n where
w = y −Xθ∗ is a zero mean sub-Gaussian random vari-



able. As a result, it is sufficient to choose λn satisfying:

(3.20) λn ≥ 2

[
h∑
i=0

αi

(
max

j=1,...,ni

∥∥∥∥∥∥
XT
Gij
w

n

∥∥∥∥∥∥
ν∗

)]
.

For any j ∈ {1, . . . , ni}, consider the random vari-
able:

Yj = Yj(w) =

h∑
i=0

αi

∥∥∥∥∥∥
XT
Gij
w

n

∥∥∥∥∥∥
ν∗

.

Following exactly similar arguments as in [19], we can
show that Yj(w) is a Lipschitz function ofw with constant
1√
n

. It follows that

(3.21) P [Yj(w) ≥ E[Yj(w)] + δ] ≤ 2 exp(−nδ
2

2σ2
)

Suitably applying the Sudakov-Fernique comparison prin-
ciple [15, 7] shows that:

(3.22) E

∥∥∥∥∥∥
XT
Gij
w

n

∥∥∥∥∥∥
ν∗

 ≤ 2σ
m

1−1/ν
i√
n

,

so that we have

E[Yj(w)] =

h∑
i=0

αiE

∥∥∥∥∥∥
XT
Gij
w

n

∥∥∥∥∥∥
ν∗


≤ 2σ

∑h
i=0 αim

1−1/ν
i√

n
.

(3.23)

Substituting everything in (3.21), we obtain

P

{
h∑
i=0

αi

∥∥∥∥∥∥
XT
Gij
w

n

∥∥∥∥∥∥
ν∗

≥ 2σ

∑h
i=0 αim

1−1/ν
i√

n
+ δ

}

≤ 2 exp

(
−nδ

2

2σ2

)
.

(3.24)

Applying the union bound over j = 1, . . . , ni and i =
0, . . . , h we obtain

P

{
h∑
i=0

αi

(
max

j=1,...,ni

∥∥∥∥∥∥
XT
Gij
w

n

∥∥∥∥∥∥
ν∗

)

≥ 2σ

∑h
i=0 αim

1−1/ν
i√

n
+ δ

}

≤ 2 exp

(
−nδ

2

2σ2
+ log(

h∏
i=0

ni)

)
.

(3.25)

For any k > 0, choosing

(3.26) δ = σ

√
2(k + 1) log(

∏h
i=0 ni)

n
,

we get the following result:

Lemma 1 If

λn ≥ 2σ

{
2
∑h
i=0 αim

1−1/ν
i√

n

+

√
2(k + 1) log(

∏h
i=0 ni)√

n

}
,

then

P [λn ≥ 2r∗(∇L(θ∗;Zn1 ))] ≥ 1− 2

(
∏h
i=0 ni)

k
.

A Simplified Bound: We may make the observation that
because of the tree-structure, the max-norm of groups at a
higher level in the tree dominate the max-norm of groups
at lower levels. Specifically, for any v and i ≥ l,

(3.27) max
j=1,...,ni

‖vGij‖ν∗ ≥ max
j=1,...,nl

‖vGlj‖ν∗ .

Hence, the right hand side of (3.20) is upper bounded by
the max-norm of groups at height h. Since

∑h
i=0 αi = 1,

we need to choose λn satisfying:

(3.28) λn ≥ 2 max
j=1,...,nh

∥∥∥∥∥∥
XT
Ghj
w

n

∥∥∥∥∥∥
ν∗

.

Following the previous construction, we can show:

P

{
max

j=1,...,nh

∥∥∥∥∥∥
XT
Ghj
w

n

∥∥∥∥∥∥
ν∗

≥ 2σ
m

1−1/ν
h√
n

+ δ

}

≤ 2 exp

(
−nδ

2

2σ2
+ log(nh)

)
.

(3.29)

Then, for any k > 0, choosing

(3.30) δ = σ

√
2(k + 1) log(nh)

n
,

we get the following simplified bound:

Lemma 2 If

λn ≥ 2σ

{
2
m

1−1/ν
h√
n

+

√
2(k + 1) log nh

n

}
,

then

P [λn ≥ 2r∗(∇L(θ∗;Zn1 ))] ≥ 1− 2

(nh)k
.



3.4 Analysis of Sparse Group Lasso: The SGL reg-
ularizer can be easily seen to be a special case of the
tree-structured hierarchical norm regularizer, when the
height of the tree is 2. The first level of the tree con-
tains nodes corresponding to the T disjoint groups G =
{G1, . . . , GT }, while the second level contains the single-
tons. It combines a group-structured norm with a element-
wise norm (2.4). For ease of exposition, we assume the
groups Gt are of the same size, say of m indices, so we
have T groups of size m, and p = Tm.

A direct analysis for SGL using the proof method just
described provides the following lemma:

Lemma 3 If

λn ≥ 2σ

{
2(1 +m1−1/ν)√

n

+

√
2(k + 1)(2 log T + logm)√

n

}
,

(3.31)

then

(3.32) P [λn ≥ 2r∗(∇L(θ∗;Zn1 ))] ≥ 1− 2

(pT )k
.

3.4.1 Main Result: A direct application of Theorem 1
now gives the following result:

Theorem 2 Let A be any subspace of Rp of dimension
sA. Let θ∗ be the optimal (unknown) regression parame-
ter, and let rA

⊥

(1,G2,α)(θ
∗) be the sparse-group lasso norm of

θ∗ restricted to A⊥, the orthogonal subspace of A. Then,
if λn satisfies the lower bound in Lemma 3, with probabil-
ity at least (1− 2

(pT )k
), we have

(3.33)

‖θ̂λn−θ∗‖22 ≤
9λ2n
k2L

sA+
λn
kL
{2τ2L(θ∗)+4rA

⊥

(1,G2,α)(θ
∗)} ,

where θ̂λn is the SGL estimator in (2.3).

Corollary 1 If the optimal parameter θ∗ is in the sub-
space A, then
(3.34)

‖θ̂λn − θ∗‖22 ≤
9λ2n
k2L

sA +
2λn
kL

τ2L(θ∗) = O

(
log p

n

)
.

4 Optimization Method
Our analysis in the previous section illustrates that SGL
encodes a tree-structured hierarchy in grouping covariates

which leads to sparsity at two levels: groups and single-
tons. The different sparsity structures induced by hierar-
chical norms have been explored in [14] and [17]. The au-
thors have independently proposed methods for optimiza-
tion.

We follow the method proposed in [17] which is
a sub-gradient based approach to solve the primal SGL
problem. It may be noted that (2.3) is the sum of
two convex functions [20], where the squared loss L is
smooth and the regularizer r is non-smooth. The proposed
algorithm iteratively computes the gradient update w.r.t.
the loss L and minimization w.r.t. the regularizer r.

The minimization associated with the non-smooth
function r is done as a sequential update of the coefficient
vector during one pass of the nodes of the hierarchical
tree. At each node of the tree, a shrinkage operation
is executed on the elements of the coefficient vector
indexed by the node. The algorithm is initialized at
the leaves of the tree and terminates at the root. The
authors prove that at termination, the vector returned by
the algorithm is the unique solution to the regularization
update step. The gradient update is computed using
accelerated gradient descent [3]. Since SGL constitutes
of a depth-2 hierarchical tree, the proposed algorithm is
expected to be fast. Theoretically, it achieves a global
convergence rate of O( 1

k ) after k iterations.
The authors of [17] have done an efficient implemen-

tation of their algorithm in a MATLAB interfaced module
called SLEP [16]. We utilized SLEP to conduct all exper-
iments in this paper.

5 Experimental Dataset and Methodology

5.1 Dataset: We used the NCEP/NCAR Reanalysis
1 dataset, where we considered the monthly means
for 1948-present [18]. The data is arranged as
points(locations) on the globe and is available at a 2.5◦ ×
2.5◦ resolution level. Our main goal is to highlight the
utility of using sparse methods to model complex depen-
dencies in climate. Since we trying to model dependen-
cies between target variables and ocean regions, we coars-
ened the data to 10◦ × 10◦ resolution. In total we have
data over N = 756 time steps. The 6 variables over
oceans, considered as covariates, are (i)Temperature, (ii)
Sea Level Pressure, (iii) Precipitation, (iv) Relative Hu-
midity, (v) Horizontal Wind Speed and (vi)Vertical Wind
Speed.

We considered 9 “target regions” on land, viz., Brazil,
Peru, Western USA, Eastern USA, Western Europe, Sa-
hel, South Africa, Central India and Southeast Asia, as
shown in Fig. 1. Prediction was done for air tempera-
ture and precipitation at each of these 9 locations. So, in
total, we had 18 response variables. These regions were
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Fig. 6 Target regions for climate indices

5. PREDICTIVE MODELING

Here we consider one specific predictive task, namely
the extraction of climate indices from observed data.
A climate index can be defined as a ‘diagnostic tool used
to describe the state of the climate system and monitor
climate’ [38], that is, it summarizes climatic variability at
local or regional scale into a single time series and relates
these values to other events. One of the most studied
indices is the southern oscillation index (SOI), which is
strongly correlated with the El Niño phenomenon [39] and
is predictive of climate in many parts of the world; see
Ref. 10 for other examples. Thus, ocean dynamics are
known to have strong influence over climate processes on
land, but the nature of these relationships is not always
well understood. This motivates the solution strategy for
our predictive modeling task, which lies in leveraging the
descriptive insights from the previous section for prediction.
Specifically, we are able to re-use the clusters obtained in
Section 4.1 as potential climate indices for predicting the
behavior of variables on land. Other researchers have also
reported on relationships between the properties of climate
networks and the El Niño index, albeit in slightly different
contexts [13,34,40]. Note that there may be other variables
that contain additional predictive value, for example,
auxiliary measurements over land (see, e.g., Refs. 41, 42).
However, we focus specifically on information content
in oceanic indices for land climate (teleconnections);
identifying and evaluating these complimentary sources
of additional predictive information is itself a nontrivial
problem and thus beyond the scope of this article.

5.1. Experimental Setup

The upcoming report from the Intergovernmental Panel
on Climate Change (expected in 2013) calls for greater

attention to regional assessments, so we focus on pre-
diction at regional scales. Accordingly, we selected nine
target regions illustrated in Fig. 6. Some of these, like
Peru and the Sahel, are known to have relationships with
major climate indices; others were included to provide a
representative set of regions around the world. Here we
consider two climate variables in each region, air tempera-
ture and precipitation (also obtained from the NCEP/NCAR
Reanalysis Project [8]), for a total of 18 response variables
(nine regions × two variables). We chose these primar-
ily for their relevance to human interests as they directly
influence our health, environment, infrastructures, and other
man-made systems.

Recall that we constructed a separate network for each
of seven variables over the sea and applied community
detection to obtain clusters (Fig. 3). The number of clusters
is different for each variable as it depends on network
properties, for a total of 78 clusters altogether. In the
following, we outline the step-by-step procedure used to
obtain our experimental results.

Step 1: For each network cluster, create a corresponding
predictor by averaging over all grid points within the
cluster.

Step 2: Similarly, for each target region, create two
response variables by computing the average temperature
and precipitation over all grid points.

Step 3: Divide the data into 50-year training set
(1948–1997) and 10-year test set (1998–2007).

Step 4: For each of the 18 response variables, build a
linear regression model on the training set and generate
predictions for the test set.

While it is conceivable to use other learning algorithms
in Step 4, we opted for linear regression as it maintains the
interpretability of the model, which is important to domain
scientists. Nonetheless, future work could explore alternate
prediction algorithms in this context.

Statistical Analysis and Data Mining DOI:10.1002/sam

Figure 1: Land regions chosen for predictions (picture from [22]).

chosen following [22] because of their diverse geological
properties and their impact on human interests.

In total, the dataset contains L = 439 locations on
the oceans, so that we had p = 6 × L = 2634 covariates
in our regression model. We considered the data from
January,1948 - December,1997 as the training data and
from January,1998 - December,2007 as the test data in
our experiments. So, our training set had ntrain = 600
samples and the test set had ntest = 120 samples.

As mentioned earlier, we used the SLEP package [16]
for MATLAB to run Sparse Group Lasso on our dataset.
It may be noted that we do not take into account temporal
relationships that exist in climate data. Moreover, since
we consider monthly means, temporal lags of less than a
month are typically not present in the data. However, the
data does allow us to capture more long-term dependen-
cies present in climate.

5.2 Removing Seasonality and Trend: As illustrated
in [22], seasonality and autocorrelation within climate
data at different time points often dominate the signal
present in it. Hence, when trying to utilize such data to
capture dependency, we look at series of anomaly values,
i.e., the deviation at a location from the ‘normal’ value.
Firstly, we remove the seasonal component present in the
data by subtracting the monthly mean from each data-
point and then normalize by dividing it by the monthly
standard deviation. At each location we calculate the
monthly mean µm and standard deviation σm for each
month m = 1, . . . , 12 (i.e. separately for January,
February,. . . etc.) for the entire time series. Finally, we
obtain the anomaly series for location A as the z-score
of the variable at location A for month m over the time
series.

Further, we need to detrend the data to remove any

trend components in the time-series, which might also
dominate the signal present in it and bias our regression
estimate. Therefore, we fit a linear trend to the anomaly
series at each location over the entire time period 1948-
2010 and take the residuals by subtracting the trend. We
use this deseasonalized and detrended residuals as the
dataset for all our subsequent experiments.

5.3 Choice of penalty parameter (λ): The choice of
the penalty parameters plays a crucial role in the perfor-
mance of the sparse regression method. Following our
analysis in section (3), we need to have λ ≥ 1.32. To em-
pirically compute the optimal choice of (λ1 = αλ, λ2 =
(1−α)λ), where λ1 is the penalty for ‖θ‖1 and λ2 is that
for ‖θ‖1,G , we ran hold-out cross-validation experiments
on the training set for each response variable for choices
of 10−4 ≤ λ1, λ2 ≤ 103, in increments of 10, since the
results were insensitive to similar penalty values. Table 1
shows the optimal choices obtained from cross-validation.
The values for different target variables are similar, with
the exception of three, which correspond to precipitation
in Africa and East USA.

6 Prediction Accuracy
Evaluation of our predictions was done by computing the
root mean square errors (RMSE) on the test data and com-
paring the results against those obtained in [22] and using
OLS estimates. [22] uses a correlation based approach to
separately cluster each ocean variable into regions using a
k-means clustering algorithm. The regions (78 clusters in
total) for all ocean variables are used as covariates for do-
ing linear regression on response variables. Their model
is referred to as the Network Clusters model. RMSE val-
ues were computed, as mentioned earlier, by predicting
monthly mean anomaly for each response variable over



Table 1: Optimal Choices of (λ1, λ2) obtained through 20-fold
Cross-Validation.

Region Variable λ1 λ2

Brazil Temperature 1 1
Precipitation 1 1

Peru Temperature 1 1
Precipitation 1 1

Western USA Temperature 1 1
Precipitation 1 1

Eastern USA Temperature 1 1
Precipitation 10 10

Western Europe Temperature 1 1
Precipitation 1 1

Sahel Temperature 1 1
Precipitation 10 10

South Africa Temperature 1 1
Precipitation 10 10

Central India Temperature 1 1
Precipitation 1 1

SE Asia Temperature 1 1
Precipitation 1 1

the test set for 10 years. The RMSE scores are summa-
rized in Table 2. We observed that SGL consistently per-
forms better than both the Network Clusters method and
the OLS method. The anomalies for temperature and pre-
cipitation in the test set lie in the range of [−2.5,+2.5].
Therefore, SGL obtained a gain of 8%− 14% in accuracy
over Network Clusters and a 7% − 15% gain in accuracy
over OLS.

The higher prediction accuracy might be explained
through the model parsimony that SGL provides. Ap-
plying SGL, only the most relevant predictor variables
are given non-zero coefficients and any irrelevant vari-
able is considered as noise and suppressed. Since such
parsimony will be absent in OLS, the noise contribution
is large and therefore the predictions are more erroneous.
We elaborate on this aspect in the next section.

7 Variable Selection by SGL
The high prediction accuracy of SGL brings to light the
inherent power of the model to select appropriate vari-
ables (or features) from the covariates during its training
phase. To quantitatively elaborate on this aspect, we se-
lect two scenarios: (i) Temperature prediction in Brazil
and (ii) Temperature prediction in India.

In order to evaluate the covariates which consistently
get selected from the set, we repeat the hold out cross-
validation experiment with the optimal choices of (λ1, λ2)
determined earlier for each scenario. During the training
phase, an ocean variable was considered selected, if it

Table 2: RMSE scores for prediction of air-temperature and
precipitation using SGL, network clusters [22] and OLS.

Variable Region SGL Network Clusters OLS

A
ir

Te
m

pe
ra

tu
re

Brazil 0.198 0.534 0.348
Peru 0.247 0.468 0.387
West USA 0.270 0.767 0.402
East USA 0.304 0.815 0.348
W Europe 0.379 0.936 0.493
Sahel 0.320 0.685 0.413
S Africa 0.136 0.726 0.267
India 0.205 0.649 0.3
SE Asia 0.298 0.541 0.383

Pr
ec

ip
ita

tio
n

Brazil 0.261 0.509 0.413
Peru 0.312 0.864 0.523
West USA 0.451 0.605 0.549
East USA 0.365 0.686 0.413
W Europe 0.358 0.450 0.551
Sahel 0.427 0.533 0.523
S Africa 0.235 0.697 0.378
India 0.146 0.672 0.264
SE Asia 0.159 0.665 0.312

had a corresponding non-zero coefficient. So, in each run
of cross-validation, some of the covariates were selected,
while others were not. We illustrate our findings in the
following subsections.

7.1 Region: Brazil In Fig.4, we plot, in descending or-
der of magnitude, the number of times each covariate was
selected during cross-validation for temperature predic-
tion in Brazil.

We observe that there are ∼ 60 covariates among the
2634 covariates that are selected in every single run of
cross-validation. In Fig. 2, we plot the covariates which
are given high coefficient magnitudes by SGL by training
on the training dataset from years 1948-1997, in order to
illustrate that SGL consistently selects relevant covariates.
It turns out that these covariates are exactly those which
were selected in every cross-validation run. Most of these
covariates lie off the coast of Brazil. The influences of
horizontal wind speed and pressure is captured, which is
consistent with the fact that the ocean currents affect land
climate typically through horizontal wind. The tropical
climate over Brazil is expected to be influenced by the
Inter-tropical Convergence from the north, Polar Fronts
from the south, and disturbances in ocean currents from
the west, as well as the influence of Easterlies from the
east and immediate south. It is interesting to see that SGL
model captures these influences, as well as the spatial
autocorrelation present in climate data, without having
any explicit assumptions.

7.2 Region: India Similarly as before, for tempera-
ture prediction in India, we construct a histogram of the
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Figure 3: Temperature prediction in India: Variables chosen through cross-validation.
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Figure 4: Temperature prediction in Brazil: Variables vs. No. of
times selected.

number of times covariates get selected during cross-
validation (Fig. 5).

Among the 2634 covariates considered, in this case
∼ 65 covariates were chosen in every single run of cross-
validation. These are plotted in Fig. 3. Again, these were
the covariates with largest coefficient magnitudes during
training on the entire training-set. We observe the impact
of Arabian Sea and Bay of Bengal on the Indian climate.
Interestingly, there are some teleconnections which are
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Figure 5: Temperature prediction in India: Variables vs. No. of
times selected.

captured by SGL over the Pacific Ocean, which may be
due to the connections between Indian Monsoon and El-
Nino [6] and SE Asian and Australian monsoons. This
may be an interesting observation for further investigation
by domain scientists.

It should be noted that the dataset is a set of discrete
samples from variables which vary continuously over
space and time. This gives rise to ‘sampling noise’, which
is manifested in some variables being selected by SGL,
which might not have physical interpretations. Handling
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(a) Temperature prediction in Brazil.
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(b) Precipitation prediction in Brazil.
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(c) Temperature prediction in India.
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(d) Precipitation prediction in India.

Figure 6: SGL RMSE vs. Radius R.

such data appropriately is a topic of future research.

7.3 Neighborhood Influence in Linear Prediction:
The previous discussion indicates that neighborhood sea
locations play one of the most crucial roles in determining
climate on land. We further investigate this fact through
the following experiments.

We observe the RMSE on the test set from SGL re-
gression by considering only those ocean variables which
lie within a certain (geodesic) distance R from the target
land region. We increase R from the ‘smallest’ distance,
where only immediate neighborhood ocean locations of
the target land region are considered, to the ‘largest’,
when all locations on the earth are considered and note
the change in RMSE of SGL prediction. Figs.6(a)-6(b)
show the plots obtained for temperature and precipitation
prediction in Brazil, while Figs.6(c)-6(d) show the same
for India. The x-axis denotes the geodesic radius in kilo-
meters from the target region within which all ocean co-
variates are considered, while disregarding all other ocean
covariates outside this radius. The y-axis denotes the cor-
responding RMSE.

The plots show that the least error in prediction is
obtained when we include covariates in locations which
are in the immediate neighborhood of the target variable.

Omitting some of the locations leads to a sharp decrease in
predictive power. This is consistent with our previous ob-
servation that SGL captures high proximity-dependence
of the target variables. Covariates which are far away lead
to a small increase in RMSE. It may be because most of
these covariates are irrelevant to our prediction task and
appear as “noise”. However, the power of the SGL model
lies in the fact that it can “filter” out this noise by hav-
ing much smaller weight on some of these covariates and
zero weight on others. The RMSE curve shows a number
of ‘dips’, which might denote that there exist covariates
with high predictive power at that distance, which, on be-
ing included, increase predictive accuracy of the model.

8 Regularization Paths

As we noted earlier, the regularization parameters (α, λ)
play a crucial role in variable selection. It is, therefore,
noteworthy to study how variable selection changes with
the change in the parameter values. For each covariate,
we can compute and plot the coefficient value for a set
of chosen (α, λ). Thus, this plot, referred to as the
Regularization Path of the SGL solutions [8], illustrates
how the coefficient values change with change in penalty



600    545.575 491.149 436.724 382.298 327.873 273.447 219.022 164.596 110.171 55.7455 1.32   

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

λ

C
oe

ffi
ci

en
t v

al
ue

Temperature: Brazil

Temp. off coast of Brazil

Precipitation off coast of Brazil
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Figure 8: Precip. prediction in Brazil: Regularization Path.

λ acts as a “tuning” parameter for the model. With
higher penalties, we obtain a sparser model. However, it
usually corresponds to a gain in RMSE. Most importantly,
though, we obtain a quantitative view of the complexity of
the model. In particular, the covariates which persist over
considerably large ranges of λ and α are the most robust
covariates in our regression task.

For the chosen training and test datasets, we compute
the regularization path for temperature and precipitation
predictions in Brazil and India. We fix α = 0.5, so that
λ1 = λ2 = λ

2 . Figs.7 - 8 show the regularization paths
for prediction in Brazil. The most ‘stable’ covariates,
viz. temperature and precipitation in location(s) just
off the coast of Brazil, have been earlier reported as
among the most relevant covariates obtained through
cross-validation on the training set.

The regularization paths for prediction in India are
plotted in Figs.9 - 10. We observe that in this case
too, the most stable covariates are among the relevant
ones obtained through cross-validation. It is interesting
to note that in all the plots, for low values in penalty, a
mild increase in penalty dramatically changes the selected
model. However, in higher ranges, since the only covari-
ates which survive are the relevant and stable ones, the
change in model selection is more gradual.
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Figure 9: Temp. prediction in India: Regularization path.
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Figure 10: Precip. prediction in India: Regularization path.

9 Conclusion
In this paper, we have proved statistical consistency guar-
antees for a general class hierarchical tree-structured norm
regularized estimators. It follows that SGL, which be-
longs to this class, has statistical consistency of estima-
tion. Application of SGL for predictive modeling of land
climate variables has shown that it inherently captures im-
portant dependencies that exist between land and ocean
variables. In terms of prediction accuracy, SGL is empir-
ically found to outperform the state-of-the-art models in
climate. We observe that parsimony in covariate selection
improves predictive performance and SGL is robust in its
selection of covariates.

Hierarchical tree-structured norm regularized estima-
tors provide a powerful tool for various sparse regres-
sion problems in climate, such as hurricane prediction
and modeling climate extremes. The results motivate us
to build sparsity inducing regularizers that capture more
complex dependency structures that are known to climate
science, e.g., ocean currents, climate cycles etc. We also
want to incorporate temporal lags, which are known to af-
fect the climate system, into our model. Our ultimate goal
is to design statistical models which, when incorporated
with the existing physical models of climate [5], can pro-
vide reasonable predictions of the chaotic climate system.
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